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We study the normal modes of acoustic oscillations within thin accretion disks assumed to be non
self-gravitating. Due to the relativistic effects, we use an effective Kerr potential to show that modes
are trapped within and near the inner region of the disk. We study in depth the characteristics of
epicyclic frequencies for rotating black hole. We find a correct dispersion relation for these modes
and show that this relation is valid for 0 < a < 0.5, up to a good approximation. We also discuss
the regions where these acoustic modes might be trapped.

I. INTRODUCTION

Accretion being one of the most ubiquitous processes
in astrophysics, describe the inflow of matter toward a
central gravitating object. The structure of these accre-
tion disks defines the properties of the central object.
In the case of a black hole, when the accreting gas gets
close to it, the characteristics of radiation produced by
it is strongly related to the spin of the hole and also to
the presence of an event horizon. Thus, analysing the
luminosities and spectra of accreting black holes yields
enticing evidence for both rotating holes and event hori-
ZOns.

Normal modes of oscillations (similar to helioseismol-
ogy modes existing within the sun) can be trapped within
the region of strong gravity that exists in accretion disks
near black holes. They are a great tool to probe the nature
of strong gravitational fields since these modes can’t be
found in Newtonian gravity. We can determine both the
mass and the dimensionless angular momentum param-
eter of the central black hole by analysing the spectrum
of these modes.

In this paper, we use an effective Kerr potential to
study the normal modes of acoustic oscillations and find
out a dispersion relation. We also analyze the calcula-
tions done by Nowak and Wagoner (1991) [3] and see up
to which interval of spin parameter a, our calculations
make sense. The epicyclic frequencies for a test particle
orbiting a rotating black hole, which are calculated using
Kerr metric are discussed in depth, showing their radial
distribution and characteristics near the inner region of
accretion disk. We also discuss the regions where these
oscillations can be trapped predicted by our dispersion
relation,
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II. METHODS AND TECHNIQUES
DISCUSSION

With the work of Kato and Fukue (1980) [1], we know
that oscillations can be trapped in the inner regions of
accretion disks using suitable radial () and vertical (Q)
epicyclic frequencies whose explicit form can be found for
free test particle orbiting the black hole. These epicyclic
frequencies have been known for rotating black holes us-
ing suitable Kerr metric. The radial epicyclic frequency
for prograde orbits is given by (Okazaki et al. (1987) [2]):
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Using Wolfram Mathematica, we graph this radial
epicyclic frequency shown in Fig. 1. From Fig. 1, we can
see that k(1) reaches a mazimum at small r and vanishes
at the inner edge of the disk (shown for various values of
a) which is not terminated by a stellar surface or mag-
netosphere, thus creating a resonant cavity where these
modes are trapped. The spectrum of this cavity thus re-
flects the properties of relativistic gravity as well as the
physics of the inner accretion disk.
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FIG. 1. Radial distribution of x as a function of r for some a.

These modes are perturbations of the disk which has
form &, = &(r, 2)e!(7tT™®) (described as Lagrangian dis-
placement) where r,2,¢ are cylindrical coordinates, Q(r)



is orbital angular velocity and a corotating frequency in-
troduced as w(r) = o + mf, with o eigenfrequency.

Nowak and Wagoner (1991) [3] analyzed the normal
modes of acoustic oscillations within thin accretion disks
where they used a modified Newtonian potential:

© = —(M/r)[1 = 3(M/r) +12(M/r)*], (2)

which approximated the dominant relativistic effects near
slowly rotating compact mass M.

II.1. The effective Kerr potential:

Here, we consider an effective Kerr potential (Fabian
and Lasenby (2019) [4]) given by:
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@Kerr = -
which we get by comparing the 72 equation (we got from
solving the Kerr metric using Lagrangian method) with
1/272 + ® e (1) = const. We see that (3) is equivalent
to (2) for small a, while in general the second and third
terms in (3) depend on h & k which are specific angular
momentum and energy respectively. They have explicit
form, for prograde orbits these are:
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The innermost stable circular orbit is calculated when
derivative of (3) vanishes and leads to r%2 — 6Mr +
S8avMr —3a® > 0. As we see, for a = 0, r7sco = 6M
while for a = 0.998M i.e. for maximum attainable value,
risco = 1.24M. We show the characteristics of ® g epr
for different values of a in Fig. 2., from which we can
interpret that for large values of r (r > TM), the de-
pendence of ®ierr on a is negligible, and only for small
values of v i.e. near the inner region of accretion disk,
a dependence matters (can also be seen by the fact that
rrsco changes as a gets closer to its maximum attainable
value).

)

3
I
S

L L L L
2 <] 4 5 6 T 8

7 as a unit of M

-0.05

010+

Dy oppr in standard units (G,c¢

=E15L

FIG. 2. Characteristics of ® k., for different values of a.

I1.2. Adiabatic oscillations:

We consider a stationary axisymmetric unperturbed
disk [3] to only have purely circular velocity, v® = rQ(r)
(Q(r) is angular velocity of disk rotation) and v" = 0,
thus dM /dt = 0 implies the negligence of viscous forces.
Here, Q(r) is a approximately a function of r only, since
the condition that the gas is barotropic and inviscid, a
combination of the r- and z- components of the equa-
tion of motion requires d§2/0z = 0. Note that r is now
the cylindrical radial coordinate of our orthonormal ba-
sis which is different from the r dependence of (2) and
(3) since both potential are spherically symmetric. The
equations of equilibrium are:

Q% = 00/0r + p~toP/or, p tOP/0z = —00/0z, (5)

while the adiabatic perturbations for this inviscid fluid
flow with equation of state, AP/P = yAp/p satisfies:

(0 + VIV W+ pTIVIP + ViD= 0, (6)

where v? is fluid velocity, p and P are fluid density and
pressure. Using the formalism developed by Lynden-
Bell & Ostriker (1967) [3] we find a covariant descrip-
tion (eq.(2.7) in [3]) for a stationary non-self-gravitating
Newtonian fluid, where the only post-Newtonian correc-
tion is in the potential. From this point, our calculations
differ from that done by Nowak and Wagoner (1991) [3]
who used the relativistic potential given in (2). We will
use Pxerrr as @ from now on to keep the notation simple
unless specified.

The relativistic Keplerian frequency has explicit form
(Kato (1990) [5]), Q% = (M /r3)(1 + aM3/2/(8r3)1/2)~1
whose distribution is shown in Fig. 3. As we can see,
these frequencies are very close to each other for all val-
ues of r, whatever values a may take and can be approx-
imated well by Keplerian angular velocity, Qx ~ gy =
M /r3.

—~ 05[
Tr —_— a= 0.9’ risco = 231 M
3]
= a=035,rsco =422M
04f ]
; a=10, risco = 6M
=
=
= 03+
—
o
=
=
8 o2l
Wl
2=
\1\/\4
& 01+ T
2 4 G g
231 4.22 6.00

ras aunit of M

FIG. 3. Radial distribution of Qg as a function of r for
some a. Here, the values of Qx actually terminates when
r < rrsco, but to show the near relation of all 3 curves we
haven’t terminated them.



While, the frequency of vertical oscillations of fluid par-
ticles, 0, around the equatorial plane is (Kato (1990

[31):
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This vertical epicyclic frequency does changes as a in-
creases unlike the above mentioned Keplerian frequency
as shown in Fig. 4. This and the fact that effective
Kerr potential is also spherically symmetric, in cylindri-
cal coordinates, near z = 0, taking the radial cylindrical
derivative, we expect:

0P

which was calculated for any general spherically sym-
metric potential with corresponding vertical frequency,
where previously we used g in place of ; which are
both equal for non-rotating central objects. Solving the
above mentioned covariant equation (eq.(2.7) in [3]) in
the cylindrical orthonormal basis, we obtain the famous
structural equations (eq.(2.8) in [3]) for thin disks hav-
ing no radial or vertical component of velocity. The only
change we have made is using €1 in place of €.
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FIG. 4. Radial distribution of €, as a function of r for some
a.

We also analyse the relation between 0P g.,,./0r and
r&? in Fig. 5., which shows that for small values of a
(a < 0.5), the radial partial derivative of Kerr potential is
correctly approximated by the radial epicyclic frequency
(rx?), which we expected. For larger a, we need to get a
better approximation.

I1.3. The dispersion relation:

We restrict ourselves to the perturbation of thin disks
in hydrostatic equilibrium, where p~10P/0z = —0®/0z
from (5) and 0®/0z = Q2 z calculated using (8). In the
lowest WKB order in A\/r where \ is radial scale length
given by, A = 2x|£"/(0&"/0r)|, where for thin disk models,
h <A« rand dw ~ cs(~ hQ). Here, h is effective half-
thickness of unperturbed disk and ¢, is speed of sound
given by, ¢ = (YP/p)'/2. To this order, Q%(r) = Q2 (r)
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FIG. 5. Comparison of d®kerr/0r and rr? where r is the
spherical polar coordinate and not the cylindrical one. Dot-
ted line shows 0® kerr/0r while the other one is rx? for corre-
sponding values of a. Here, the values of of all curves actually
terminates when r < rrsco.

and we get the ”WKB versions” of structural equations
(eq.(2.8) in [3]) given by eq.(3.1) in [3]. Here, the radial
epicyclic frequency is different, given by:
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On solving these "WKB versions” of structural equations
by expanding the Lagrangian displacement about z = 0,
we get the differential equation:

2wt g
VrVy(g-1)§; + 7971 6r67“jm =0, (10)

K2 =407 +r

(9)

where, 0/0r,, = d/dr — 2mQ Jwr, v, = (w? — K2) /703,
and v,(j) = (w? — (1+7)Q%)/7Q% . This leads to the new
dispersion relation given by:

(w? — TN ) (w? — K?) = wic2k?, (11)

where Q, and & are given by (7) and (1) respectively.
Since, the R.H.S in (11) is always positive, we have two
cases of trapped oscillations: for regions where w? < k2
and w? < JO3 and for regions where w? > k? and w? >
JO2.

FIG. 6. Characteristic of 0®kerr/0r. Here, r and z are the
cylindrical coordinates, measured in units of M. Orange,
green and blue surfaces shows the graph for a = 0.9, a = 0.5
and a = 0 respectively.



This result (11) have been calculated after considering
proper coordinate transformation between spherical and
cylindrical coordinate and we show in Fig. 6., the char-
acteristic of 0®er-/0r in cylindrical coordinate and see
that near z = 0, the z-dependence of 0P g.pr/Or is neg-
ligible, while arguing from the point made earlier in Fig.
5., the result (11) holds true to a great approximation up
to a = 0.5, while for larger values of a, for e.g. a = 0.9,
we see the relation (8) will no longer be true.

III. RESULTS AND DISCUSSION

We find a dispersion relation in (11). For the regions,
w? > k% and w? > JO?, the normal modes of oscillations
are mainly acoustic (due to pressure), where they extend
a small distance from the inner regions of the disk. We
see that for r > rrsco, (8) holds very true for low values
of a, 0 < a < 0.5, while for » » r;5¢0, i.e. for the large
outer region of the disk, (8) holds even for larger values of
a (interpreted from Fig. 5.). Thus, acoustic (pressure)
modes can be trapped near a small distance from inner
region of the disk and even in the large outer region of
the disk.

4

For the regions, w? < k2 and w? < JQi, modes can be
trapped near the region where x becomes maximum, but
these are not acoustic in nature as discussed by Nowak
and Wagoner (1992) [6] but rather wholly due to gravity
as we expect from studying the characteristics of epicyclic
frequencies, since near r;sco, they all shows large varia-
tion.

We can use this result to analyse different binary sys-
tems, like GRS 1915+105 shown to have the low fre-
quency QPO’s varying just as the dynamic frequency (the
inverse of the sound crossing time) by Misra et al. (2019)
[7]. The spectrum of X-ray binary systems contains var-
ious modes of oscillations and some of these are acoustic
in nature, trapped at various radii from the inner most
stable circular orbit and this result can be used to study
some of these trapped oscillations, as we discussed the
region and interval of @ in which (11) makes sense.

IV. SUMMARY AND CONCLUSIONS

Using an effective Kerr potential, we find a dispersion
relation (11) which correctly describes the normal acous-
tic modes of oscillations for w? > k2, which hold true up
to a good approximation for 0 < a < 0.5.
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